|
page 1
|
Thanks to Robert...
|
|
APM-22ES
plaatje van een APM-22ES die op ebay te koop gezet is door iemand uit Wenen. Het betreft een in Duitsland geproduceerd model dat geen APM tweeter heeft.
APM-22ES
|
|
APM-22ES
plaatje van een APM-22ES die op ebay te koop gezet is door iemand uit Wenen. Het betreft een in Duitsland geproduceerd model dat geen APM tweeter heeft.
|
|
APM-44ESG
lijken wel verdacht veel op de APM-66ESG.
APM-44ESG
|
 
|
APM-66ESG
Duitse versie van de APM-66. Uitgevoerd in donkerbruin hout met zwarte APM woofer en normale midrange en tweeter.
APM-66ESG
|
|
APM-8
|
|
APM-8 CROSSOVER
|
|
APM-8 MIDRANGE
|
|
APM-8 TWEETER
|
|
APM-8 UNITS
|
|
APM-8 WOOFER
|
|
APM-9
Van de APM-9 is alleen een prototype; het is nooit in productie gekomen. De opvolger APM-8 wel.
APM-9
|
|
APM-X270
|
|
BM-600
|
|
DCR-VX1
|
|
DCR-VX1
|
|
DCR-VX1
|
|
DCR-VX1000E
|
|
DCR-VX1000E
|
|
DCR-VX1000E
|
|
DCR-VX2000E
|
|
DCR-VX2000E
|
|
DCR-VX9000E
|
|
DTC-1000ES
|
|
DTC-77ES
|
|
DTC-A6
Sampling frequency :
Playback : 48 - 44,1 - 32 khz (SP/LP).
Recording (digital) : 48 - 44,1 - 32 khz (SP/LP).
Recording (analog) : 48 - 44,1 - 32 khz (LP).
2 digital input (coaxial/optical).
2 digital output (coaxial/optical).
Analog i/o on RCA.
SCMS : Yes
DTC-A6
|
|
DTC-A7
Sampling frequency :
Playback : 48 - 44,1 - 32 khz (SP/LP).
Recording (digital) : 48 - 44,1 - 32 khz (SP/LP).
Recording (analog) : 48 - 44,1 - 32 khz (LP).
2 digital input (coaxial/optical).
2 digital output (coaxial/optical).
Analog i/o on RCA.
SCMS : Yes
DTC-A7
|
|
DTC-A8
Sampling frequency :
Playback : 48 - 44,1 - 32 khz (SP/LP).
Recording (digital) : 48 - 44,1 - 32 khz (SP/LP).
Recording (analog) : 48 - 44,1 - 32 khz (LP).
2 digital input (coaxial/optical).
2 digital output (coaxial/optical).
Analog i/o on RCA.
SCMS : Yes
DTC-A8
|
|
ICF-7600DA
|
|
ICF-7600DA
|
|
ICF-7600DA
|
|
ICF-7600DA
|
|
ICF-7600DA
|
|
ICF-7800
|
|
ICF-7800
|
|
ICF-SW100E
|
|
ICF-SW100E
|
|
ICF-SW100E
|
|
ICF-SW100E
|
|
ICF-SW100E
|
|
PCM-1
From the early stages of the PCM-1 development, Sony had been looking for a way to record and play back sound using a digital audio disc. In 1975, Sony put the Betamax VCR on the market. At the same time, Sony had been working to market an optical videodisc (laser disc) which was developed by Philips. Described as a record that plays a picture, and having a diameter of thirty inches, the same as a conventional LP record, this large platter was developed by Senri Miyaoka, the same person who had developed the Trinitron color TV. Deputy President Iwama remarked to Miyaoka, Sony must have optical technology in the coming age of electronics. Encouraged by Iwama, Miyaoka assembled a team of engineers to develop an optical recording system, selecting members from within the 2nd Development Division.
In spring 1976, Doi and his colleagues delivered a prototype of the PCM-1 to Miyaoka and his team and asked them to make a disc, which could record digital audio. This disc was probably the first digital audio disc prototype in the world. 110volt.
The PCM-1, commercialized in September 1977
The type of signals recorded by the Betamax and the video disc were the same, meaning that the PCM-1, which had been developed as an adapter for the Betamax, could also be used as an adapter for the video disc player. At this time, Doi's plan was to connect the videodisc player to the PCM-1, thus creating a digital audio disc. The sound quality of the Betamax was relatively high, so this seemed like a reasonable plan. When Doi and his colleagues tested the disc they had developed; however, they felt as if hit with a sledgehammer. What they heard was the complete opposite of their expectations. Far from producing a clear sound, the disc produced a poor disconnected sound against a background of static and could barely be heard.
After looking into the causes, Doi made three decisions. The first was to use the PCM-1, which they had been preparing to launch in the autumn of that year, as an adapter exclusively for Betamax. This was a simple and logical decision. The second decision was to approach the audio disc and the videodisc as unrelated items and give priority to developing audio technology. In other words, to develop a brand new way to directly record the digital audio signal onto an optical disc, instead of using a video signal from a video recording format. At the time, the videodisc was a star product, which everyone believed would prove popular throughout the world. The decision to develop a digital audio disc that used a totally different format was extremely bold. Doi's third decision was to actively develop signal error correction technology, something for which no one had any experience to draw upon. Considering this, the third decision was quite exceptional.
Audio data is converted to binary digital signals, and recorded on the surface of a digital audio disc as an array of ones and zeros. When played back, digital signals are converted to electronic signals as a light beam reads them. Signal error correction is a function whereby the machine rectifies a situation in which a bit has been incorrectly read. Signal error correction is especially important in optical discs because, compared to tape a greater number of erroneous readings are made during playback.
Under Doi's leadership, the team began to study signal error correction. At the same time, Doi ordered computer specialists to create a computer simulation system for studying signal error correction. Thanks to the efforts of Doi and his team, Sony was able to establish a firm position for itself in the field of digital audio.
At the 1977 Audio Fair, Sony and two other companies exhibited their digital audio discs and players. However, these two companies used a video signal on a videodisc, and they had a rather simple signal error correction feature. Sony's machine was an unmodified video disc player that recorded digital audio signals, not video signals, directly on an optical disc that employed signal error correction.
Sure enough, people criticized S
PCM-1
|
|
PCM-2500
|
|
PCM-500
|
|
PCM-7040
4 heads + Timecode.
Sampling frequency :
Playback : 48 - 44,1 khz.
Recording (digital) : 48 - 44,1 khz.
Recording (analog) : 48 - 44,1 khz.
1 digital input (XLR).
1 digital output (XLR).
Analog i/o on XLR.
Power consumption : 38 W
Weight : 10 kg
SCMS : Switchable.
PCM-7040
|
|
PCM-R300
Sampling frequency :
Playback : 48 - 44,1 - 32 khz (SP/LP).
Recording (digital) : 48 - 44,1 - 32 khz (SP/LP).
Recording (analog) : 48 - 44,1 - 32 khz (LP).
2 digital input (coaxial/optical).
2 digital output (coaxial/optical).
SBM
Analog i/o on RCA.
Power consumption : 30 W
Weight : 5 kg
SCMS : Switchable.
PCM-R300
|
|
PCM-R500
4 heads.
Sampling frequency :
Playback : 48 - 44,1 - 32 khz (SP/LP).
Recording (digital) : 48 - 44,1 - 32 khz (SP/LP).
Recording (analog) : 48 - 44,1 - 32 khz (LP).
2 digital input (coaxial/XLR).
2 digital output (coaxial/XLR).
SBM
Analog i/o on RCA and XLR.
Power consumption : 34 W
Weight : 7,2 kg
SCMS : Switchable.
PCM-R500
|
|
PCM-R500
de achterzijde van de PCM-R500
|
|
PCM-R700
Sampling frequency :
Playback : 48 - 44,1 - 32 khz (SP/LP).
Recording (digital) : 48 - 44,1 - 32 khz (SP/LP).
Recording (analog) : 48 - 44,1 - 32 khz (LP).
2 digital input (coaxial/XLR).
2 digital output (coaxial/XLR).
SBM
Analog i/o on RCA and XLR.
Power consumption : 34 W
Weight : 7,4 kg
SCMS : Switchable.
PCM-R700
|
|
PGM-2950QM
29" cubic design kleurenmonitor met een resolutie van 600x480 (VGA 31.5 KHz 60/70 Hz). on screen menu.
PGM-2950QM
|
|
PS-LX3
|
|
PS-LX3
|
|
PS-LX3
|
|
PS-X65
|
|
PS-X65
|
|
PS-X65
|
|
PS-X65
|
|
PS-X65
|
|
PS-X65
|
|
PVM-2950QM
29" cubic design kleurenmonitor met een horizontale resolutie van 600 lijnen. Ondersteund PAL, NTSC, SECAM en NTSC 4.43. Twee ingangen voor video/Y/C+RGB, on screen menu.
PVM-2950QM
|
|
SA-S1
|
|
SA-S1
|
|
SA-S1
|
|
SA-S1
|
|
SA-S1
|
|
SB-5335
|
|
SS-5GX
|
|
SS-850 MKII
power handling capacity: 100 Watt (max), 200 Watt (peak) at 8 Ohm.
dimensions: 45 x 66 x 27.5cm (width x height x depth)
weight: 18,85 Kg (each)
SS-850 MKII
|
|
SS-G333ES
|
|
SS-G333ES
|
|
SS-G777ES
|
|
SS-G777ES
|
|
SS-G777ES
|
|
SS-G7A
|
|
SS-R1
|
|
SS-R3
|
|
SS-R5
|
|
SS-V4
|
|
SS-V4
|
|
ST-J88B
|
|
ST-J88B
|
|
ST-J88B
|
|
STR-V45L
|
|
STR-V45L
|
|
STR-V45L
|
|
TA-343
|
|
TA-AV33
|
|
TA-AX2
|
|
TA-AX2
|
|
TA-AX3
|
|
TA-AX7
|
|
TA-D9000
|
|
TA-D9000
|
|
TA-D9000
|
|
TA-D9000
|
|
TA-E88
zilverkleurige versie van de TA-E88B.
TA-E88
|
|
TA-F35
|
|
TA-F45
|
|
TA-F777ES
|
|
TA-N88
zilverkleurige variant van de TA-N88B
TA-N88
|
|
TA-N88B
De voorkant.
|
|
TA-N88B
De achterkant. Alleen een 220V aansluiting.
|
|
TA-N88B
De sticker op de bovenkant geeft aan dat het om een digitale eindversterker gaat.
|
|
TA-N88B
Aan de linkerzijkant bevinden zich de aansluitingen voor de luidsprekers.
|
|
TA-N88B
Aan de rechterzijkant bevinden zich de aansluitingen voor de line in.
|
|
TA-N88B
Een waardige voorloper van de ESPRIT serie. Sony heeft vele jaren aan deze eindeversterker onderzocht en ontwikkeld. Met de TA-N88B ontstond de eerste digitale eindversterker voor consumenten ter wereld. Een rariteit. Zelfs vandaag de dag nog kosten professionele digitale eindversterkes meerdere duizenden euro's.
Voor lange tijd was deze versterker "Science fiction". De werking ervan berust op de Class D schakeling. Hoe werkt dat? Het analoge ingangssignaal (van de voorversterker, radio, CD) wordt in digitale puls-breedte signalen (PWM-codes) gemoduleerd, versterkt en over een analoge uitgangsfilter aan de luidsprekers afgegeven.
Voor toenmalige omstandigheden was de klank meer bijzaak. Wat veel meer telde was de technologische voorsprong. Gezien de huidige stand van de techniek moet je je niet veel verwachten van de geluidskwaliteit. Het is veel meer een verzamelstuk geworden. Een zeer zeldzaam verzamelstuk.
|
|
TA-P7F
|
|
TA-P7F
|
|
TA-P7F
|
|
TAE-8450 VU METER
thanks to Samuel Mikkola (see http://www.multi.fi/~samppo/hifi.htm)
TAE-8450
|
|
TC-FX2
|
|
TC-FX2
|
|
TC-FX2
|
|
TC-FX5
|
|
TC-FX5
|
|
TC-K75
|
|
TC-K75
|
|
TC-K88B
|
|
TC-K88B
|
|
TC-K88B
|
|
TC-K88B
|
|
TC-K88B
|
|
TC-K88B
|
|
TC-KA5ES
|
|
TC-KA5ES
|
|
TC-KA5ES
|
|
TC-KA5ES
|
|
|